Reproduction and invasiveness in St. John’s wort

Reproduction and invasiveness in St. John’s wort

Reproduction and invasiveness in St. John’s wort

The relative ability of different plant taxa to invade new biogeographic regions successfully is dependent upon a number of biological and physical factors, one of which is the reproductive system, which directly influences population structure, gene flow and evolutionary potential. Considering seed formation, plants can reproduce through sex (selfing and outcrossing) or apomixis (asexual reproduction through seed.

St. John’s wort (Hypericum perforatum) is such an invasive species which is indigenous to central and eastern Europe; it is self-compatible and can reproduce through sex or apomixis. H. perforatum has successfully invaded North America since the first record of introduction in Lancaster, Pennsylvania in 1793. Its high genotypic plasticity in conjunction with variable levels of facultative apomixis are hypothesized to have contributed to its rapid spread throughout the continent. For example, in an analysis of multiple phenotypic traits, Maron et al. (2004) demonstrated that the introduction of H. perforatum into North America was accompanied by rapid climatic adaptation.

Using an analysis of a collection of European native and North American invasive accessions, a recent paper in Molins Annals of Botany examines biogeographic differentiation in both natural and introduced populations, and test whether variation in apomixis traits is correlated with the propensity for H. perforatum to invade novel environments.

 

Molins, M.P., Corral, J.M., Aliyu, O.M., Koch, M.A., Betzin, A., Maron, J.L., & Sharbel, T.F. (2014) Biogeographic variation in genetic variability, apomixis expression and ploidy of St. John’s wort (Hypericum perforatum) across its native and introduced range. Annals of Botany, 113 (3): 417-427 doi: 10.1093/aob/mct268.
St. John’s wort (Hypericum perforatum) is becoming an important model plant system for investigations into ecology, reproductive biology and pharmacology. This study investigates biogeographic variation for population genetic structure and reproduction in its ancestral (European) and introduced (North America) ranges. Over 2000 individuals from 43 localities were analysed for ploidy, microsatellite variation (19 loci) and reproduction (flow cytometric seed screen). Most individuals were tetraploid (93 %), while lower frequencies of hexaploid (6 %), diploid (<1 %) and triploid (<1 %) individuals were also identified. The presence of pure and mixed populations representing all three genetic clusters in North America demonstrates that H. perforatum was introduced multiple times onto the continent, followed by gene flow between the different gene pools. Taken together, the data presented here suggest that plasticity in reproduction has no influence on the invasive potential of H. perforatum.

 

VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

About AJ Cann

Alan Cann is a Senior Lecturer in the Department of Biology at the University of Leicester and Internet Consulting Editor for AoB.