Tag Archives: Plant Biology

High-impact research

Image: Wikimedia Commons.

Image: Wikimedia Commons.

There are few more-iconic Earth-history events than the tale of the dinosaurs being wiped out after an asteroid collided with Earth approximately 66 million years ago close to what today is the Yucatán Peninsula in Mexico. And far from being a local extinction episode (an extirpation), there is evidence that ‘dinosaurs and many of their contemporaries went extinct rapidly and simultaneously all across the globe’ from a study by Zoltán Csiki-Sava et al. Indeed, the collision and its aftermath are implicated as the cause of the Cretaceous–Paleogene (K–Pg) extinction event [formerly known as the Cretaceous–Tertiary (K–T) extinction], which saw a mass extinction of around three-quarters of the planet’s plant and animal species. The firestorm that is also inferred to have resulted from the impact has been considered widespread enough to have caused the attendant plant extinctions, or ‘a global firestorm that would have burned every twig, bush and tree on Earth’ in the more eye-catching prose associated with the science reporting of this research. Well, as sensational as that sounds, the latest view on that event suggests that there was no such global firestorm. In research that attempted to recreate the conditions of the impact in the laboratory(!!), Claire Belcher et al. found that the intense but short-lived heat near the impact site could not have ignited live plants, challenging the idea that the impact led to global firestorms. And, ‘because plants and ecosystems are generally resistant to single localized fire events, we conclude that any fires ignited by impact-induced thermal radiation cannot be directly responsible for plant extinctions, implying that heat stress is only part of the end-Cretaceous story’. Which could be viewed as proof of the saying that – and with Mr Cuttings’ profound apologies – the penstemon is mightier than the saurid. But there’s another twist to this asteroid’s fiery tale. For as much as ‘shock and awe’ may precede ‘regime-change’ in the shocking and awful affairs of the human world, so too in the natural world. The even greater degree of shock and awe that would no doubt have accompanied the Chicxulub bolide impact appears to have precipitated a major ‘regime change’ in the world of plants. Using fossil leaf measurements of minor-vein density and mass per area (as proxies for carbon assimilation rate and carbon investment, respectively), Benjamin Blonder et al. infer that plant species that survived the K–Pg extinction event had fast-growth ecological strategies corresponding to high assimilation rates and low carbon investment. Which is consistent with the loss of slow-growing evergreen species, and the ascendancy of deciduous angiosperms. ‘Potentially this also tells us why we find that modern forests are generally deciduous and not evergreen’, Boulder explains. And, as if to underline how dramatic (Earth-shattering almost…) an event this was, it spawned not just the one but two regime changes as the planet also witnessed the ascendancy of seed-bearing plants over the previously dominant, sporophyllous taxa. Although a truly extra-terrestrial origin of life on Earth – panspermia – is questionable, it does look like celestial bodies do have direct influence over – impact upon even(!) – the lives of some inhabitants on Earth. Phyto-astrology anyone? And the botanical relevance of this impact reverberates to this day in the form of asteroid P/2010 A2, a possible remnant cohort of the K–Pg impactor, and which is a member of the Flora family of asteroids.

[In the interests of balance, it should be mentioned that doubts exist amongst certain groups regarding the interpretation of the ‘Chicxulub incident’. Slightly less controversially, it is recognised that fire is a powerful life-giving component of natural ecosystems and has led to the development of so-called pyrophytes (‘plants which have adapted to tolerate fire’). For insights into some Mediterranean pyrophytes, Helen Roberts’ account on the University of Bristol‘s Botanic Garden blog is recommended. And putting the Yucatán bolide’s collision into the bigger context of the Earth’s chronological record, the BBC has produced an extremely… err… timely publication: ‘The 25 biggest turning points in Earth’s history’ – Ed.]

MPs fiddle with Nature…

Image: Wikimedia Commons.

Image: Wikimedia Commons.

In a so-called democracy, such as the United Kingdom (UK), the power to decide what is best for the majority is delegated to a few worthy individuals, the Members of Parliament (MPs). But how knowledgeable are those MPs, and therefore how fit are they to tell the rest of the population what is good for us? Indeed, is the country/world safe in the hands of such people? It is not my intention to provide a definitive answer to that question (that is most definitely what Mr P. Cuttings is not about!). Instead, I will share a story with you that might help you to make up your own minds… As the autumn of 2014 was in full swing and the lanes of merry England were elsewhere turning leafy as leaves fell from the trees, a gardener – employed by the UK’s MPs – was observed removing leaves by hand from lime trees in New Palace Yard (below the clock tower that houses Big Ben near the UK’s Houses of Parliament). Understandably there was outrage in the media of that green and pleasant land over the waste of money involved in this seemingly unnecessary activity (e.g. in The Telegraph and the Daily Mail). Now, I don’t know much about the finer details of the senescence (a ‘phase of development that is a transdifferentiation episode following the completion of growth, which may or may not be succeeded by death, but which is absolutely dependent on cell viability and the expression of specific genes’) of leaves, or of the process of leaf fall – abscission (in which process leaves are periodically shed from plants such as trees in the autumn) –  but I do understand that picking leaves before they’re ‘ripe’ has a number of consequences, and concern over any waste of money seems to be least of our worries. For instance, their premature removal prevents resorption of important materials such as nitrogen – the supply of which macronutrient from the environment is frequently implicated in limiting plant growth – from the senescing leaves back into the body of the plant. Plus, by preventing the leaves from falling to the ground they will not undergo decomposition, thereby preventing the release of further important nutrients back into the environment where they would continue to support life by flowing within biogeochemical cycles. Furthermore, removing leaves from the trees before they have had time to develop the abscission zone potentially opens up the plant to entry of harmful agents such as fungibacteria and viruses. And the soil, its plant roots and other inhabitants are deprived of the insulating properties that a carpet of leaves would provide.  Although this benefit would only last until the leaves are decomposed or removed, it is conceivable that this layer would probably keep the subphyllous habitat just that little bit warmer for longer, for whatever biological purposes might benefit thereby and therefrom. [Mr P. Cuttings realises that he’s going out on a bit of a limb here, but just because nobody else may have heard of this, doesn’t mean that it might not be important or ecologically relevant – Ed.] Whilst it has come to light that the trees were effectively being pruned and not simply stripped of their leaves, the result is the same – leaves from the tree ‘untimely ripped’, and the knock-on effects noted above still apply. So, if MPs can’t be trusted not to interfere with some of the most basic processes of nature, can we trust them at all? Hmmm, something to ponder as we await the return of spring (assuredly) and of the leaves (hopefully!) to London and the rest of that democratised nation.

The 1001st use of bamboo?

Image: David Raju, India Biodiversity Portal, http://indiabiodiversity.org. [http://indiabiodiversity.org/species/show/28371]

Image: David Raju, India Biodiversity Portal, http://indiabiodiversity.org. [http://indiabiodiversity.org/species/show/28371]

Bamboo, an extremely fast-growing, woody grass that is now established throughout the world, is so versatile that it allegedly has 1000 uses. Traditionally, such uses are numbered from the human perspective, including food (not limited to bamboo shoots, beloved of Giant Pandas – which iconic bears are so revered by humans that these endangered animals are shamelessly further exploited as the emblematic logo of the Worldwide Fund for Nature),  drink (e.g. bamboo beer),  medicine/therapy (e.g. ‘bamboo massage’),  construction (it makes a recyclable, light-weight alternative to the metal pipes and tubes commonly used as scaffolding outside of southeast Asia), paper (e.g. ‘ghost money’), textiles (not just ladies’ undergarments, such as bustles and ribs of corsets) and music (e.g. flutes). Added to that list – albeit from a non-human perspective – is the report by Kadaba Seshadri et al. that documents use of bamboo as a breeding base for Indian frogs. Chalazodes bubble-nest frog, Raorchestes chalazodes, and the Ochlandrae reed frog, R. ochlandrae, were observed to use the bamboos Ochlandra travancorica and O. setigera, respectively, in this novel reproductive behaviour in the Western Ghats (India). This unique life history involved adult frogs entering the hollow internodes of the bamboo through small openings (presumed to have been made by insects or rodents), depositing developing eggs within, and providing parental care. However, having now recognised their bamboo-dependence, a concern is that over-harvesting of the bamboo by humans outside of protected areas (for paper and pulp) threatens survival of the bamboo-nesting frog species, especially R. chalazodes, which is already known to be critically endangered in the wild. I don’t know – as if another dire warning of amphibian disease by the ‘chytrid fungus’ Batrachochytrium salamandrivorans wasn’t already enough to make these critters hopping mad!

 

[Ever-mischievous, P. Cuttings wonders if he’s found a 1002nd bamboo use – as biodegradable coffins for any frogs who ‘croak’ whilst engaged in babysitting duties within the bamboo… – Ed.]

Accurately measuring cavitation resistance to understand how plants cope with drought

Root resistance to cavitation Guest post by Danielle Marias, Oregon State University.

 

Plant water transport systems from roots to stems to leaves are under negative pressure due to tension on the water column. This is caused by water loss through stomata – small pores on leaves – and is driven by how dry the atmosphere is, as described by the cohesion-tension theory. This tension or negative pressure puts plants at risk for cavitation. Cavitation is the conversion of water from liquid to vapor and can result in a gas-filled (embolized) vessel or tracheid that no longer transports water. Therefore, cavitation resistance is crucial to coping with and surviving drought.

Methods to assess cavitation resistance have been highly debated. It has been suggested that the standard centrifuge method, the most common and efficient method for measuring cavitation resistance, may have methodological artifacts and is not appropriate for roots. To investigate this, Pratt et al. (2015) compared the standard centrifuge method to two other independent types of measurements of cavitation in roots. This compelling study suggested that the standard centrifuge method accurately measures cavitation resistance and is appropriate for measuring cavitation resistance in roots. Because roots are generally more vulnerable to cavitation and embolism than stems and leaves, studies accurately measuring root cavitation are vital to understanding plant responses to drought as the severity and frequency of drought may increase with changing climate. Drought resistance and related topics in tree hydraulic functioning will also be covered in the forthcoming Special Issue in Tree Physiology.

 

Pratt, R.B., MacKinnon, E.D., Venturas, M.D., Crous, C.J., & Jacobsen, A.L. (2015) Root resistance to cavitation is accurately measured using a centrifuge technique. Tree Physiology, 24 February 2015 doi: 10.1093/treephys/tpv003
Abstract
Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change

Plants, grafty little critters…

Image: Richard Reames/Wikimedia Commons, www.arborsmith.com.

Image: Richard Reames/Wikimedia Commons, www.arborsmith.com.

When it comes to making new combinations of genes – which may help to generate new species  in the evolutionary process known as speciation – the most usual route in eukaryotes  is via sexual reproduction.  In this ancient process, and speaking rather generally, gametes, made via meiosis (in which the complement of genetic material is reduced), fuse with each other and thereby create a new individual with the full genetic complement of the adult. Generally, this mode of reproduction, whether leading to development of new species or not, is viewed as ‘good’. And sex is favoured during adaptation to new environments. But sex is also ‘expensive’,  and one might expect some organisms to have found a cheaper – better? – way. Although alternatives to sexual reproduction exist – so-called asexual reproduction –  they don’t generate the genetic variety that could give rise to creation [oops, controversial term… – Ed.] of new species.

But, guess what? Plants seem to have hit upon an asexual method that can give rise to new species, as work by Ignacia Fuentes et al., straightforwardly entitled ‘Horizontal genome transfer as an asexual path to the formation of new species’, suggests. Using grafting (a time-honoured, horticultural technique used to join parts from two or more plants so that they appear to grow as a single plant), the team demonstrated that entire nuclear genomes  could be transferred between plant cells of unlike species (and which you wouldn’t expect to be able to be able to reproduce sexually in nature…). Or, in the technical language of a scientific paper, the authors ‘provide direct evidence for this process resulting in speciation by creating a new allopolyploid  plant species from a herbaceous species (Nicotiana tabacum, ‘cigarette tobacco’) and a woody species (N. glauca, ‘tree tobacco’) in the nightshade family (Solanaceae).  The new species is fertile and produces fertile progeny’ (and has even been christened N. tabauca).

All intriguing stuff. And which just goes to demonstrate – again, and if ’twere needed – how much more interesting (better?) plants are than animals! Finally, the authors suggest that this phenomenon could be exploited for the generation of novel allopolyploid crop species. But where will this all end? And isn’t this genetic engineering? Albeit of a kind that occurs naturally? And what should one make of the tree that’s been so multiply and repeatedly grafted that it’s a composite of dozens of different species? Or is it now just one species…? Discuss!

[Ed. – For more on plant grafting, why not check out Charles Melnyk and Elliot Meyerowitz’s ‘primer’ entitled “Plant grafting” in Current Biology 25(5): R184-R188, 2015 [doi:10.1016/j.cub.2015.01.029]? (Which may freely be available from: http://www.cell.com/current-biology/pdf/S0960-9822%2815%2900060-3.pdf). For more on the first author’s grafting ambitions in Arabidopsis and Zea mays, visit http://www.slcu.cam.ac.uk/directory/melnyk-charles, and http://www.slcu.cam.ac.uk/research/meyerowitz-group for ‘Distinguished Associate’ Elliot Meyerowitz]

Timeless inner beauty…

Image: P. Cuttings’ personal archive.

Image: P. Cuttings’ personal archive.

When trying to appreciate something, it’s often remarked that it is the ‘inner beauty’ that’s important. In which case the plant cell biologists who probe the details within cells (and often illuminate them in all their glorious pin-point precision and fluorescent beauty with immunofluorescent techniques*) must not only, as scientists, be seekers of truth (for is it not writ, in scientia veritas?)  but also be true searchers after beauty. And if something’s really beautiful/true then it has a quality that transcends normal, mortal values and should be permanent. Is that correct? Well, the palaeopteridophytological work of Benjamin Bomfleur et al. may just be the definitive proof of that notion of transcendental permanence. Using language unusual for a serious, sober, scientific article, they describe the fossilised stem of a royal fern (family: Osmundaceae) in Lahar deposits (of putative Early Jurassic – Pliensbachian – date; 189.6–183 million years ago) from Korsaröd in Scania (southern Sweden) as having cellular details that are ‘exquisitely preserved’. Amongst the sub-cellular features discernible are parenchyma cells in the pith and cortex that show preserved membrane-bound cytoplasm, cytosol granules and putative amyloplasts (starch-bearing bodies). Furthermore, most cells contain interphase nuclei with conspicuous nucleoli! And – even more remarkably? – Supplementary Fig. S6 shows detail that is interpreted as signs of necrosis and programmed cell death(!). Whilst more importance is attached by the authors to the fact that the genome size of these reputed ‘living fossils’ has remained unchanged over at least 180 million years (and is understandably viewed as a ‘paramount example of evolutionary stasis’), the degree of internal preservation of cell contents is so good (see Figs S4 and S6 in the paper’s supplementary material!) I’m sure many extant workers could only hope to emulate such faithful preservation in their current work! So, not only is a thing of beauty a joy, it is a joy… forever (or 180 million years at least – long enough for you?). Somebody should write a poem about that!

* For a scientific haiku poem about this, may I humbly suggest the following? Page 15 at the Art Science Movement’s website.

 

[For an award-winning science journalist’s take on Bomfleur et al.’s Science paper, see Jennifer Frazer’s blog. Full-text of the paper – with supplementary pages – appears to be available in front of a paywall via the DiVA portal. And with apologies to our readers for the shameless self-advertisement by Mr P. Cuttings for his ‘poem’! – Ed.]

Better together…

Image: pixabay.com.

Image: pixabay.com.

No, this is not a belated bit of biased support for the Scottish referendum on independence from England  (which was rejected by those who voted and thereby prevented the United Kingdom becoming the anagrammatically amusing Untied Kingdom…). Rather, it is recognition that – at least in nature – sometimes things do work better when two partners co-operate rather than work against each other. Take for example the reef-building corals – an intimate mutualistic symbiosis between a unicellular alga, a dinoflagellate and an animal, the coral polyp. Put very simply, the alga provides much of the polyp’s food requirements by dint of its photosynthesis, which ultimately allows it to make the massive coral reefs. Although warm-water coral reefs are the basis of extremely rich and biodiverse ecosystems, they are nutritionally poor. This ‘nutrient paradox’ – originally recognised by Charles Darwin (is there any branch of biology that doesn’t have a contribution from this venerable Victorian?) – has traditionally been presumed to be due to very tight cycling/recycling of nutrients within the ecosystem (and the abundance of mutualistic symbioses therein, amongst other factors…). However, a new twist to this nutrient tale has recently been proposed by Orr Shapiro et al. They have revealed that, far from being static structures dependent upon the vagaries of currents to bring nutrients to them and remove waste products, the coral polyp actively generates micro-currents and eddies that promote nutrient inflow and exchange of materials. Using externally located cilia, these miniature structures whip up ‘vortical flows’ immediately adjacent to the epidermal surface, which reduces the exchange-limiting boundary layer at that site thereby facilitating mass transport between coral and the ocean. And in the way of all good discoveries, there are potential spin-offs to other areas of study. In this instance the team posits that investigation of these surface-situated cilia could be used as an alternative to the study of more-inaccessible, internalized cilia, e.g. those in the airways of animals. Thus, there may be unpredictable benefits for biomedicine from this photosynthetically dependent marine mutualism (I know, plants lighting up the path for others to follow – again!!). I’ve oftentimes wondered what the polyp brought to this relationship – aside from providing a chalky castle for the enslaved, hard-working alga. Well, I guess we now know, and it’s reassuring to discover (finally…?) that this intriguing symbiosis is much more mutual than we might previously have imagined.

 

[A video of this phenomenon can be seen on YouTube. The irony of internalization of the dinoflagellate symbiont – which, as its name implies, usually has flagella (two in this case, like much bigger versions of cilia)  – within the coral polyp and its consequential loss of its flagella on the one hand, and the importance of the polyp’s cilia (pale imitations of flagella?) in and to this relationship on the other, is not lost on Mr P. Cuttings. And this item gives a whole new meaning to the phrase ‘on the lash’ because cilium is Latin for eye-lash… – Ed.]

Thirsty? Then suck on a stone!

Golden gypsum crystals

Golden Gypsum Crystals from Winnipeg. Image: Rob Lavinsky/Wikimedia Commons

Whilst it is claimed that only the taxman can get blood out of a stone, it seems that some plants can abstract water from stone-like minerals.

Arguably, ahead of light, water is the most important abiotic factor that plants need and obtain from the environment. Although water is essential to plant life, it is not always available in sufficient amounts, and plants have evolved many adaptations that enable them to cope with water-limited environments – e.g. xerophytes in extremely arid areas, and halophytes in saline habitats. One strategy that was hitherto unrecognised is the extraordinary (I don’t think that’s too strong a word to use) ability of some plants to obtain large parts of their life-giving and -sustaining water from a mineral in the soil.

Analysing the isotopic composition of xylem sap in the rock rose Helianthemum squamatum, Sara Palacio et al. showed that it was similar to that of the water of crystallization in gypsum – CaSO4.2H2O, an inorganic mineral common in the plant’s environment. And, significantly, the composition of the water in the xylem differed from that of free water – i.e. that which is freely available within the soil (albeit in short supply!), the more usually assumed water source for plants. This therefore provided strong evidence that the plants were using the mineral as a water source – especially in the summer months when it accounted for 70–90% of the water used by these shallow-rooted plants.

Several other ‘coexisting shallow-rooted, sub-shrub species’ (the gypsum-specialist Lepidium subulatum – a gypsophyte – and the ‘non-specialists’ Linum suffruticosum and Helianthemum syriacum) behaved in an isotopically similar way to H. squamatum, suggesting that this phenomenon may be a widespread strategy of water-extraction by plants in this environment.

Although it is as yet unclear how the plants get hold of the water from this unusual source, it is suggested that high temperatures in the environment may cause the water to evaporate from the mineral when it can then be acquired by the plant.

Whilst this is a neat enough solution (pun recognised, but not intended!) for life on Earth, the authors conclude that ‘given the widespread occurrence of gypsum in dry lands throughout the Earth and in Mars, these results may have important implications for arid land reclamation and exobiology’. So, botanical research that may truly be ‘out of this world’!

[Intrigued by these intriguing gypsophytes? Then why not indulge your interest and read more of Sara Palacio et al.’s research in ‘Plants living on gypsum: beyond the specialist model’? – Ed.]

Brilliant bird-brained bryophyte diaspore diaspora…

many mosses

Ernst Haeckel, Kunstformen der Natur. Leipzig and Vienna: Verlag des Bibliographischen Instituts, 1904.
Pin for later

There is an ancient and time-honoured association – maybe co-evolution even – between birds and flowering plants, e.g. in respect of pollination and dispersal of the fruits/seeds of the latter by the former. Now, at the other end of the evolutionary spectrum of the Plant Kingdom, is news of another avian–Plantae link-up as Lily Lewis et al. present evidence for long-distance transport of bryophyte ‘bits-and-pieces’ in the plumage of transequatorial migrant birds.

Bryophytes – a general term that embraces mosses, liverworts and hornworts – are so-styled ‘lower plants’ that have occupied the planet for megamillennia and have many important ecological roles. But, like the other members of the Plant Kingdom, bryophytes are essentially immobile and fixed to one location. This poses problems to any enterprising moss, etc., that wants to boldly go, seek out, occupy and colonise new areas, in order to command resources and help to ensure its survival in the dog-eat-dog jungle that is the natural world.

However, evolution has equipped these cryptogams with a phase of the life cycle that is potentially mobile, the spore stage. Transfer of those spores away from the parent plant – and their subsequent germination, establishment and development into individual bryophyte plants – reduces competition for resources between parent and offspring, and extends the area occupied by that species.

Consequently, exploiting agents that can contribute to wide-ranging dispersal of those spores represents a considerable boost to aspirations of territorial gain for an ambitious ‘lower plant’. But reliance on spores to spread the species can be risky; e.g. if the bryophyte taxon concerned is dioicous and it either doesn’t travel along with another spore that gives rise to, or to a place that already contains, the corresponding male/female gametophyte in the new neighbourhood. Which is why Lewis et al.’s work is of considerable interest because – and despite the headline in Scientific American’s news item on the subject – the bird-assisted moss migration is not really about spores, but diaspores.

Although a diaspore (or ‘disseminule’) can be defined as ‘a reproductive plant part, such as a seed, fruit, or spore, that is modified for dispersal’, the definition is usually broadened to include any plant part that could result in the establishment of a new individual. Thus, it includes not only bryophyte spores, but also fragments of established plants, too.

Sampling the plumage of bird species in their Arctic breeding grounds – prior to their South Pole-ward migration – the team found examples of diaspores not only of bryophytes, but also of green algae/cyanobacteria, and fungi. The presence of these putative propagules amongst bird feathers thus seems to establish this phenomenon as another instance of ectozoochory (transport of plant – and algae/fungi/bacteria! – propagation units on the external surface of an animal).

But just because these passengers may be present at the start of the journey doesn’t necessarily mean that they arrive at the carrier’s destination, which in some cases – such as the red phalarope and the semipalmated sandpiper – is the southernmost tip of South America; e.g. could the disseminules be consumed during preening as a sort of in-flight snack by the birds…?

And – as the investigators recognise – even if diaspores arrive, this doesn’t demonstrate that they are viable and could become established in the new home. But it’s another step towards unlocking the mystery of how the disparate bipolar distributions of certain taxa of bryophytes, etc. could be established and maintained. Whether this counts as ‘blue-skies’ research I’m not sure, but it’s a topic that’s certainly got legs and could well take off!

[And if you’re interested in seeing of some of the pre-publication comments on the bryophyte paper, they can be found online. And for more on the world of moss, I recommend Jessica M. Budke’s blog site. – Ed.]

M people and the ‘B’ word…

Image: Wikimedia Commons.

Image: Wikimedia Commons.

No, this is not an item about M People, an ‘English house music band which formed in 1990 and achieved success throughout most of the 1990s’, nor about using profane language… Anyway, how would any of that be relevant to a straitlaced, sober, serious botanical news round-up that is the hallmark of a P. Cuttings item? It is about the phenomenon (I don’t think that’s too strong a word) known as ‘Dr M’. If you’ve not encountered this gentleman, then you should – we can probably all learn a little from him in our eternal quest to big-up botany and help to enthuse the next generation of plant biologists (or, at least, attempt to engender plant appreciation into the citizens of tomorrow). Dr M is the moniker of Dr Jonathan Mitchley, botanist and plant ecologist who goes WILD about teaching plant identification at the University of Reading (UK), and also acts as an ecological consultant with RSK Ltd. Looking like one imagines the Peter Pan of phytology should look like, his grinning visage beams botanical radiance upon all who chance upon his various web-based antics. His enthusiasm for all things verdant seems boundless and is evident in his varied offerings, such as his blogvideo-based plant ID quizzes and his YouTube-tastic Poaceae song. Maybe all of his outputs may not be to everyone’s taste, but they’re worth a look – you are highly likely to find something you can ‘borrow’ to enhance your own teaching of botany. In any event it’s really uplifting to see Dr M and ‘his people’ having so much botanical fun! As Dr M himself is wont to say, ‘Rock on, Botanists!!!’ Indeed (!).

 

[The true diehards amongst you might like to consider the extended-play, blooper-enhanced version of the Poaceae song on YouTube. Right, now what is the collective noun for a group of botanists? Answers, on a postcard-sized sheet of herbarium paper, please to… And in breaking news – well it was when this piece was penned – Dr M is now Associate Professor of Field Botany at the University of Reading – Ed.]