Tag Archives: Pollination

Botanists uncover the secrets of sexual attraction

An interesting paper has moved into free access in Annals of Botany: Caught in the act: pollination of sexually deceptive trap-flowers by fungus gnats in Pterostylis (Orchidaceae). It sounds like a very specific paper, and in some ways it is, but it’s also a helpful starting point for looking at sexual deception and pollination.

Male fungus gnat (genus Mycomya) showing copulatory behaviour with the labellum of Pterostylis sanguinea. Photograph by R. D. Phillips.

A fungus gnat on the labellum of Pterostylis sanguinea, but is it true love? Photo: R D Phillips.

Typically we think of plants rewarding pollinators with nectar, but there’s no compelling reason that plants have to do this. All they need is to be pollinated. In fact attracting insects that are foraging through many plants for sugars could lead to valuable pollen being dumped on an incompatible plant, so if a plant could evolve a trick to attract insects to their own specific species, that could be a big advantage. Some orchids do this with sexual deception, but Phillips et al. point out that recent discoveries of deception in Asteraceae and Iridaceae mean that it could be a much more common method of pollination than realised.

The usual victims of sexual deception are Hymenoptera and Diptera. Phillips et al. found fungus gnats Mycetophilidae were pollinating Pterostylis sanguinea. They suspected that these orchids used sexual deception for pollination, so they looked closer. What gives their very specific question wider importance is that first they tackled the question: What exactly does pollination by sexual deception mean?
Continue reading

Buzz pollination, floral traits and pollen release

Buzz pollination, floral traits and pollen release

Buzz pollination, floral traits and pollen release

The mechanism of pollen release by sonication (buzz pollination) remains poorly understood. In a comparative study of eight sympatric buzz-pollinated species of Pedicularis, Corbet and Huang find that workers of bumble-bees (Bombus friseanus) assort themselves among Pedicularis species according to body size, and adjust their buzzing behaviour (buzz/wingbeat frequency ratio) in relation to the floral traits (galea length, pollen-grain volume) of each species. A reconsideration of published experimental studies indicates that pollen release depends on the velocity component of the buzzing vibration, supporting a hypothesis that triboelectric charging of pollen grains may contribute to the mechanism.

Evolution of Old World Salvia in Africa

Evolution of Old World <i>Salvia</i> in Africa

Evolution of Old World Salvia in Africa

Salvia (Lamiaceae) is the largest genus in the mint family, and phenotypic diversity of the genus in Africa is largely the result of repeated colonizations of the continent from different sources. Will and Claßen-Bockhoff produce a phylogenetic reconstruction and suggest that parallel character evolution is the rule rather than the exception in Old World Salvia. Notable examples are given by papery, conspicuously coloured calyces and repeated switches from bee- to bird-pollination. Different staminal lever types also evolved in parallel and should not be used any longer for characterizing major clades.

Pollination by sexual deception in Pterostylis

Pollination by sexual deception in Pterostylis

Pollination by sexual deception in Pterostylis

Pterostylis is an Australasian terrestrial orchid genus of more than 400 species, most of which use a motile, touch-sensitive labellum to trap dipteran pollinators. The mode of attraction, however, is uncertain. Phillips et al. find that a single species of male gnat (Mycetophilidae) visits and pollinates the rewardless flowers of P. sanguinea, and that the gnats often show probing copulatory behaviour on the labellum, leading to its triggering and the temporary entrapment of the gnat in the flower. Pollen deposition and removal occurs as the gnat escapes from the flower via the reproductive structures. The labellum is the sole source of the chemical attractant involved. It is predicted that sexual deception will be widespread in the genus, although the diversity of floral forms suggests that other mechanisms may also operate.

Effects of pollination limitation and seed predation on female reproductive success of a deceptive orchid

13101S1R1For many species of conservation significance, multiple factors limit reproduction. In a new study published in AoB PLANTS, Walsh et al. examined the contribution of plant height, number of flowers, number of stems, as well as the joint impacts of mutualists and antagonists on the pollination biology and seed production of the imperiled, deceptive orchid, Cypripedium candidum. They found flowering stem height to be the only morphological feature significant in reproduction, with taller flowering stems simultaneously receiving increased pollination and decreased seed predation. Furthermore they found decreased seed mass in individuals subjected to hand-self pollination treatments. Their results may help explain the factors limiting seed production in other Cypripedium and further emphasize the importance of management in orchid conservation.

Flow cytometric analysis of bee pollen loads

Flow cytometric analysis of bee pollen loads

Flow cytometric analysis of bee pollen loads

Understanding the species composition of pollen on pollinators has applications in agriculture, conservation and evolutionary biology, but current identification methods cannot always discriminate taxa at the species level. Kron et al. test the use of flow cytometry to characterize pollen loads from individual bees, using DNA content as a species marker, and find that they are able to quickly measure DNA contents for nuclei from hundreds to thousands of pollen grains per bee. They observe differences in pollen load diversity between bumble-bees and honey-bees and find evidence of between-cytotype pollinator movement in a population of Solidago. This technique provides a new tool to complement other methods for examining pollinator behaviour.

In the right place at the right time for pollination

A key innovation in the evolution of plants was the origin of the hermaphroditic flower, where both male and female sexual functions occur in the same complex structure. However, this innovation created a significant problem: sexual conflict, in which the function of one sex is compromised by the proximity and function of the other. This led to a further fundamental challenge in the function of animal-pollinated, hermaphroditic flowers: minimizing such sexual conflict while still enabling the male and female fertile parts to contact pollinators in the same place. Two solutions to sexual conflict have been explored evolutionarily by plants: (1) spatial separation of fertile parts (herkogamy) and (2) temporal separation of sexual functions (dichogamy).

To evaluate the effect of partial dichogamy and movement herkogamy on pollination accuracy in ‘generalist’ flowers (flowers pollinated by a variety of animal species), a recent paper in Annals of Botany investigates Parnassia epunctulata, a plant with open, white flowers, from subalpine meadows. The stamens of this species show a remarkable pattern of repositioning, and dehisce one by one over several days before the female phase. This feature permitted the authors to examine whether the anthers and stigma are positioned accurately, facilitating pollen removal and receipt.

The open flowers were visited by a variety of pollinators, most of which were flies. Seed set was pollinator-dependent (bagged flowers set almost no seeds) and pollen-limited (manual pollination increased seed set over open pollination). Analyses of adaptive accuracy showed that coordinated stamen movements and style elongation (movement herkogamy) dramatically increased pollination accuracy. Specifically, dehiscing anthers and receptive stigmas were positioned accurately in the vertical and horizontal planes in relation to the opposite sexual structure and pollinator position. In contrast, the spatial correspondence between anthers and stigma was dramatically lower before the anthers dehisced and after stamens bent outwards, as well as before and after the period of stigmatic receptivity. This shows for the first time that a combination of movement herkogamy and dichogamy can maintain high pollination accuracy in flowers with generalized pollination. Staggered pollen and stigma presentation with spatial correspondence can both reduce sexual interference and improve pollination accuracy.

Armbruster, W.S., Corbet, S.A., Vey, A.J., Liu, S.J., & Huang, S.Q. (2013) In the right place at the right time: Parnassia resolves the herkogamy dilemma by accurate repositioning of stamens and stigmas. Annals of Botany, 113 (1): 97-103.

How orchids feed specialized bee pollinators

A significant proportion of orchids in the subtribe Oncidiinae produce floral oil as a food reward that attracts specialized bee pollinators. This oil is produced either by glands (epithelial elaiophores) or by tufts of secretory hairs (trichomal elaiophores). Although the structure of epithelial elaiophores has been well documented, trichomal elaiophores are less common and have not received as much attention.

Variation in floral morphology in the genus Lockhartia

The flowers of Lockhartia are 5–30 mm in length and lack fragrance perceptible to humans. Oil secretion by flowers of Lockhartia was first reported by Silvera (2002), but the morphology and anatomy of their elaiophores have not previously been studied in detail. A recent paper in Annals of Botany surveys the flowers of 16 species of Lockhartia and shows that all have elaiophores (oil glands) of the trichomal type.

Specialized hairs on the legs or abdomen (but not the mouthparts) of oil-gathering bees are used to collect oils, and the latter are then used as food for larvae. Pollinaria of Lockhartia are small (typically 0·7–1·3 mm long) and their attachment to the bodies of bees has not been reported. This may be due to the fact that the thin stipe collapses upon drying and this obfuscates identification of the pollinarium to generic level. The situation is further exacerbated by the fast-flying and extremely timid nature of oil-collecting bees. As a result, they are much more difficult to capture or observe from short distances than male euglossine bees, for which an abundance of observational data exists.

Blanco, M. A., Davies, K. L., Stpiczyńska, M., Carlsward, B. S., Ionta, G. M., & Gerlach, G. (2013). Floral elaiophores in Lockhartia Hook. (Orchidaceae: Oncidiinae): their distribution, diversity and anatomy. Annals of Botany, 112(9), 1775-1791.


Book Review – Pollination and Floral Ecology

Pollination and Floral Ecology

Pollination and Floral Ecology

Pat Willmer. 2011. Princeton University Press. £65. pp. 832.

Any text book that tries to assess and summarise the whole of a multidisciplinary research field such as pollination ecology and floral biology is required to be four things:  (1) comprehensive in its scope; (2) up to date in its coverage of the literature; (3) accurate in its assessment of the current state of the field; and (4) authoritative in the conclusions it presents.

This volume by Professor Pat Willmer of the University of St Andrews certainly ticks the first box.  It’s a huge book, and covers everything relating to the evolution of flower attraction and reward systems, ecological interactions with pollinators, biochemistry, physiology, agriculture and conservation; all in 29 chapters split into three sections, with 87 pages of references.  The literature extends to 2010, which is impressive for a book published in 2011 (though see my comments below about completeness of the literature).   Specialist terms are highlighted in bold to direct the reader to the glossary at the back, a useful device even if there are a few inaccuracies, which I’ll mention later.

So far so good, and the author is to be congratulated on putting together such a comprehensive, not to mention timely, single-author book.  It’s clearly the summation of a career devoted to studying pollinators and flowers, and the author’s passion for her subject is apparent throughout.

However when we come to points 3 and 4, things are less straightforward.  There are some issues with accuracy that are troubling in a book aimed at newcomers to the field as well as established researchers.  To give just a few examples:

- on p.18 we are told that asclepiads have “one stamen” (they have five); on p.169 and in the glossary that asclepiad pollinia are the pollen grains from one anther (they are the contents of half an anther); and on p.170 that the pollinaria are “glued” to pollinators (they actually clip on).

- in the glossary, tree ferns are referred to as “cycads”, an error that is repeated on p.89.

- on p.88 there is a statement suggesting that tree fern spores were dispersed by “animal fur” 300 million years ago, long before the evolution of mammals, and that this (and dispersal of spores of fungi and mosses) is the equivalent of pollination: it is not, it equates to seed dispersal.

These are troubling errors of basic botany that are forgivable in an early draft of the book (everyone makes mistakes) but not in the final published version, after it’s been read, reviewed, checked and edited.  If the book goes to a second edition I hope that these (and other) mistakes will be fixed.  But they do hint at a fundamental problem with a book (and a field) as large and complex as this: a single author is arguably unlikely to be able to do justice to all of the subject matter.

There are parts of the book where it is unclear (to me at least) what the author is actually saying.  For example, on p.96 there is a graph which, it is suggested, demonstrates that pollination by animals is “technically uncommon when assessed in terms of the numbers of broad taxonomic groups that use it”, though the legend to the figure claims that “most orders of plants have no families” that possess wind pollination.  This is confusing: what is to be concluded by someone new to the field?  Is animal pollination common or rare?  Likewise, on p.91 we are told that the “first angiosperms… would probably have had their pollen moved mainly by wind…”, but then on p.92 that “an element of insect pollination could be regarded as almost ancestral”.  Which is correct?

There are other aspects to the book that are simply out of date; for example the linear, rather deterministic schemes set out in Figures 4.6 and 4.8 showing that Cretaceous flowers were open and radially symmetrical, and only later evolved into complex, bilateral flowers in the Tertiary, ignores fossil discoveries showing that orchids evolved in the Cretaceous (Ramírez et al., 2007).  Likewise, discussion of “counterproductive” crypsis in flowers (p.124) neglects recent findings of cryptic, wasp-pollinated plants in South Africa (e.g. Shuttleworth & Johnson, 2009).

There is a theme emerging here: some of the botany that the book presents is inaccurate, confused or out-dated.  Fortunately the zoological aspects of the book are much better, as one might hope from a Professor of Zoology.

The final criterion, that the book should be “authoritative in the conclusions it presents”, is however, in my view, the main weakness of this volume.  The author is unhappy with recent developments in the field, particularly as they relate to community-scale assessments of plant–pollinator interactions, in terms of network analyses and predictive utility of pollination syndromes.  Clearly Professor Willmer is on a mission to rebalance what she perceives as failings within some of the current trends in studying pollination.  A book review is not the place for a technical dissection of the author’s arguments, which is best left to the peer-reviewed literature (though I would argue that that’s also the place to present some of the criticisms the author introduces, rather than into a text book such as this).  I could focus the whole of this review on these topics because: (a) they take up a large proportion of the book, about one-third of the text pages; and (b) they are highlighted on the cover as being one of the main contributions of the book; specifically, that the author provides a critique of previous work that does not distinguish between “casual visitors and true pollinators” that can in turn result in “misleading conclusions about flower evolution and animal-flower mutualism”. Unfortunately her targets are straw men, and one – I believe quite telling – example will suffice.

On p.447 there is a criticism of the use by Waser et al. (1996) of Charles Robertson’s historical data set, and specifically that the analyses they present “…did not distinguish visitors from pollinators even though Robertson’s database did include information on this”.  However Waser et al. clearly state (p.1045 of their paper) that only pollinators were included in the analyses, not all flower visitors, and that “visitation is not a synonym for pollination… non-pollinating visitors are excluded (as in Robertson 1928)” (p.1048).

Why should Professor Willmer make a statement to the contrary?  Evidently she wishes to impress upon her readers that (in her opinion) there are fundamental problems in current approaches to studying pollination at a community level.  But even if that were the case (and I don’t believe it is) misrepresenting previous studies to suit an argument is poor scholarship at best.

Regardless of whether some of her criticism is well founded, the author does not seem to appreciate that plant–flower visitor interaction networks are ecologically important regardless of whether or not a flower visitor acts as a pollinator.  More fundamentally, true pollination networks possess similar attributes to flower visitor networks, for example a nested pattern of interactions, and arguments about level of generalisation of species are a matter of scale, not category (Ollerton et al., 2003).

At the end of her Preface, Professor Willmer reveals to us quite a lot about her personal attitude to research when she states that some readers might find her approach “too traditional” in an “era where ecological modelers [might be claimed to] have more to tell us than old-style field workers”.  What the author fails to appreciate is that this is a grossly false dichotomy and that most of the pollination ecologists who have embraced new analytical methodologies for understanding plant–pollinator interactions are also “old-style field workers” with considerable experience of studying the ecology of flowers and their pollinators beyond the computer screen.

In summary this is a book that, for all its good qualities of comprehensiveness and (mostly) up to date coverage, should be read with caution: parts of it are neither as accurate nor as authorative as the field of pollination and floral ecology deserves.


Jeff Ollerton

Email jeff.ollerton@northampton.ac.uk


Ollerton J, Johnson SD, Cranmer L, Kellie, S. 2003. The pollination ecology of an assemblage of grassland asclepiads in South Africa. Annals of Botany 92: 807-834.

Ramírez SR, Gravendeel B, Singer RB, Marshall CR,  Pierce NE. 2007. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448: 1042-1045.

Shuttleworth A, Johnson SD. 2009. The importance of scent and nectar filters in a specialized wasp-pollination system. Functional Ecology 23: 931-940.

Waser NM, Chittka L, Price MV, Williams N, Ollerton J. 1996. Generalization in pollination systems, and why it matters. Ecology 77: 1043-1060.


Avoidance of interspecific pollen transfer in Pedicularis

Avoidance of interspecific pollen transfer in Pedicularis

Avoidance of interspecific pollen transfer in Pedicularis

Plants surrounded by individuals of other co-flowering species may attract more pollinators but can suffer a reproductive cost from interspecific pollen transfer. Yang et al. compare pollination and reproduction in Pedicularis densispica (lousewort) when occurring alone or together with co-flowering Astragalus pastorius. They find that mixed populations attract many more nectar-seeking bumble-bees, which move frequently between the species. However, differences in floral architecture mean that P. densispica is pollinated via the dorsum of the bees whilst A. pastorius receives pollen via the abdomen, thus avoiding interspecific transfer. The overall result is that co-flowering yields more seeds that are heavier and have higher germinability than in pure populations of P. densispica.